Objective
It is now possible to monitor and manipulate neurons in live, awake animals, revealing how patterns of neural activity represent information and give rise to behaviour. Very recent experiments show that many circuits have physiology and connectivity that is highly variable and that changes continually, even when an animal’s behaviour and environment are stable. Existing theories of brain function assume that neural circuit parameters only change as required during learning and development. This paradigm cannot explain how consistent behaviour can emerge from circuits that continually reconfigure, nor what mechanisms might drive variability and continual change. Understanding this deep puzzle requires new theory and new ways to interpret experimental data. I will develop a theory of reconfiguring circuits by significantly generalizing my previous work that uses control theory to show how network activity can be maintained in spite of variability and continual turnover of crucial circuit components. We will analyse how biological plasticity mechanisms steer collective properties of neurons and circuits toward functional states without requiring individual parameters to be fixed, resulting in circuit models with consistent output but variable and mutable internal structures. In close collaboration with leading experimentalists we will challenge these modelling principles to account for new findings which reveal that navigation, sensory percepts and learned associations are underpinned by surprisingly dynamic, variable circuit connectivity and physiology. This will generate new, exciting questions that will drive experiments and theory together: how can known plasticity mechanisms generate reconfigurable neural representations? Do continually reconfiguring networks possess unique functional flexibility and robustness, and are they vulnerable to specific pathologies? And how can we design new experiments to test theories of robust, reconfigurable networks?
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences neurobiology
- medical and health sciences basic medicine pathology
- medical and health sciences basic medicine physiology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2016-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
CB2 1TN CAMBRIDGE
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.