Objective
Many efficient drugs have been designed to treat neurological disorders, but have failed in the clinic because they were toxic, could not cross the blood-brain barrier, and/or had deleterious side effects in healthy regions. I propose a conceptual breakthrough to solve these three issues, with minimally-invasive organic electronic ion pumps (OEIPs) to provide targeted treatment where and when it is needed. I will use epilepsy as the disease model because of its high rate of drug-resistance (30%) and will offer concrete opportunities for clinical transfer of such state-of-the-art technology.
The clinical problem: Resective surgery is frequently the last option available to a patient with drug-resistant epilepsy (> 1 million persons in the EU). However, surgery fails in 30% of the cases and can have deleterious consequences with severe postoperative neurological deficits (impaired motor function, speech and memory). Furthermore, some cases of epilepsy are simply untreatable surgically because resective surgery would leave unacceptable damage to core functions. Clearly, a new therapeutic approach is needed when neurosurgery is not possible or deemed too risky.
The OEIP solution: As I have demonstrated, OEIPs combine state-of-the-art organic electronics and pharmacology to control epileptiform activity in vitro by directly delivering inhibitory neurotransmitters on-demand. I additionally demonstrated that thin-film flexible organic electronics can be used to create minimally-invasive depth probes for implantation which significantly reduced tissue damage compared to standard rigid implants in vivo. I will integrate OEIPs on such probes creating devices which will have both the high-quality recordings provided by the organic electrodes for electrophysiological seizure detection and the molecular delivery capability of the OEIP for seizure intervention. The devices will be a closed-loop system to detect seizure onset and intervene in the affected brain region.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- medical and health sciences basic medicine neurology epilepsy
- medical and health sciences clinical medicine surgery
- medical and health sciences basic medicine pharmacology and pharmacy drug resistance
- medical and health sciences medical biotechnology tissue engineering artificial pancreas continuous glucose monitors
- medical and health sciences basic medicine neurology parkinson
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2016-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
13284 Marseille
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.