Objective
The main goal of PARTNERS is the creation of new classes of devices based on the most recent findings in tunnelling transport. Three basic activities will play a crucial role in the realisation of the aims:
- Theory and modelling: in particular the development of a fundamental physical model for the description of electrical and optical properties of structures.
- Physical analysis: in particular steady-state optical analysis, magneto-optical analysis and transient optical analysis and high-frequency high-speed analysis of operational tunnelling structures.
- Growth and processing: especially the molecular beam epitaxial growth of heterostructures in various III-V materials and ultra-fine lithography, enabling the advanced processing of vertical tunnelling components with nanoscale lateral dimensions.
A study has been made of the physics and potential device applications of resonant tunnelling and related structures, both for electrical and for optical applications. The optical work focused on improving quantum efficiency, decreasing linewidth, maximising wavelength tuning, obtaining optical bistable operation, decreasing switching speed, obtaining room temperature operation and determining scalability of LEDs. Theory and modelling assisted several of these research topics.
A tunelling program with graphical user interface ideally suited to application inb the classroom has been developed and is available.
The electrical work covered the use of single barrier varactors for use in frequency multipliers. Both conventional structures and interband tunelling diodes have been fabricated and studied.
APPROACH AND METHODS
The members of the consortium have all been responsible for international pioneering work in this field. Building upon the most recent developments in the various laboratories, the partners will formulate a series of devices to form the framework of the work. In many cases, prototypes of the proposed devices have already been constructed and exhibit promising characteristics that would be relevant for future industrial applications.
The essential theme of the research will be to gain understanding of the basic physics underlying the operation of the devices. Each device will be pushed to its performance limits using all the techniques and expertise available. Exploitable devices will be identified and redesigned to maximise their industrial applicability by careful selection of growth and fabrication parameters. Specific, desirable properties will be emphasised with this approach. Feedback between the three areas of theory, analysis and fabrication should produce the ultimate goal: a series of prototype devices available to the European semiconductor industry for further development.
POTENTIAL
Although the research carried out by the different institutions and the value offered by cooperation ensures a long-term industrial potential, the project is developing basic technology that industry will need in the medium term. Real applications are foreseen in consumer electronics, telecommunications and space. Major interest in the consortium's work has already been expressed by various European system houses.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences electromagnetism and electronics semiconductivity
- engineering and technology electrical engineering, electronic engineering, information engineering information engineering telecommunications
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Data not available
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Data not available
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Data not available
Coordinator
3030 Heverlee
Belgium
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.