Objective
The aim of the project is to develop a geometrically meaningful framework that allows generalizing deep learning paradigms to data on non-Euclidean domains. Such geometric data are becoming increasingly important in a variety of fields including computer graphics and vision, sensor networks, biomedicine, genomics, and computational social sciences. Existing methodologies for dealing with geometric data are limited, and a paradigm shift is needed to achieve quantitatively and qualitatively better results.
Our project is motivated by the recent dramatic success of deep learning methods in a wide range of applications, which has literally shaken the academic and industrial world. Though these methods have been known for decades, the computational power of modern computers, availability of large datasets, and efficient optimization methods allowed creating and effectively training complex models that made a qualitative breakthrough. In particular, in computer vision, deep neural networks have achieved unprecedented performance on notoriously hard problems such as object recognition. However, so far research has mainly focused on developing deep learning methods for Euclidean data such as acoustic signals, images, and videos. In fields dealing with geometric data, the adoption of deep learning has been lagging behind, primarily since the non-Euclidean nature of objects dealt with makes the very definition of basic operations used in deep networks rather elusive.
The ambition of the project is to develop geometric deep learning methods all the way from a mathematical model to an efficient and scalable software implementation, and apply them to some of today’s most important and challenging problems from the domains of computer graphics and vision, genomics, and social network analysis. We expect the proposed framework to lead to a leap in performance on several known tough problems, as well as to allow addressing new and previously unthinkable problems.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences genetics
- natural sciences computer and information sciences software
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2016-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
OX1 2JD Oxford
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.