Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Spin Transport Beyond Electrons

Objective

Spintronics is motivated by the quest for the next-generation beyond-Moore electronics. The conventional approach that is based on single-electron spin currents does, however, not solve the thermodynamic bottleneck that is caused by the dissipation associated with moving electrons. A revolutionary new approach to electronics is based on information processing and transfer by means of magnons, i.e. quanta of the collective spin-wave excitations in magnets, so that the electrons do not move at all. On top of this application perspective, magnons give rise to completely new physical phenomena that arise due to magnonic collective effects and that do not fit the paradigm of single-electron spintronics.
This shift from single-electron to collective degrees of freedom to carry spin current – in large part substantiated by a 2015 experimental breakthrough involving the PI – calls for the formulation of a new basic model that includes these novel collective phenomena on equal footing with single-particle spin currents. It is the central and unifying scientific goal of this theoretical-physics proposal to develop this model. We focus on three material systems: ferromagnetic insulators, ferromagnetic metals, and antiferromagnets, and for each of these the objective is to bring out the new physics that arises due to i) coupled spin-heat transport in the linear-response regime, ii) collective effects in spin valves, and iii) magnon Bose-Einstein condensation and spin superfluidity. The latter paves the way for “magnon superspintronics”, the integration of room-temperature spin superfluidity with spintronics. In terms of methodology the proposed research spans the spectrum from phenomenological hydrodynamic theory to evaluation of the various bulk and interface parameters from microscopic descriptions. Our recent work gives us, combined with our background in cold-atom systems, a head start to carry out the proposed research.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-COG - Consolidator Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2016-COG

See all projects funded under this call

Host institution

UNIVERSITEIT UTRECHT
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 617 500,00
Address
HEIDELBERGLAAN 8
3584 CS Utrecht
Netherlands

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 617 500,00

Beneficiaries (1)

My booklet 0 0