Objective
We propose to develop the theoretical foundations of transforming memory into data rates, and to explore their practical ramifications in wireless communication networks.
Motivated by the long-lasting open challenge to invent a communication technology that scales with the network size, we have recently discovered early indications of how preemptive use of distributed data-storage at the receiving communication nodes (well before transmission), can offer unprecedented throughput gains by surprisingly bypassing the dreaded bottleneck of real-time channel-feedback. For an exploratory downlink configuration, we unearthed a hidden duality between feedback and preemptive use of memory, which managed to doubly-exponentially reduce the needed memory size, and consequently offered unbounded throughput gains compared to all existing solutions with the same resources. This was surprising because feedback and memory were thought to be mostly disconnected; one is used on the wireless PHY layer, the other on the wired MAC.
This development prompts our key scientific challenge which is to pursue the mathematical convergence between feedback-information-theory and preemptive distributed data-storage, and to then design ultra-fast memory-aided communication algorithms that pass real-life testing.
This is a structurally new approach, which promises to reveal deep links between feedback information theory and memory, for a variety of envisioned wireless-network architectures of exceptional promise. In doing so, our new proposed theory stands to identify the basic principles of how a splash of memory can surgically alter the informational-structure of these networks, rendering them faster, simpler and more efficient. In the end, this study has the potential to directly translate the continuously increasing data-storage capabilities, into gains of wireless network capacity, and to ultimately avert the looming network-overload caused by these same indefinite increases of data volumes.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2016-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
06410 BIOT
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.