Objective
Our daily-life visual environments, such as city streets and living rooms, contain a multitude of objects. Out of this overwhelming amount of sensory information, our brains must efficiently select those objects that are relevant for current goals, such as cars when crossing a street. The visual system has developed and evolved to optimally perform tasks like these, as reflected in the remarkable efficiency of naturalistic object detection. Little is known about the neural mechanisms underlying this efficiency. NATVIS aims to fill this gap, presenting a comprehensive multi-method and hypothesis-driven approach to improve our understanding of the neural mechanisms underlying the efficient detection of objects in natural scenes. fMRI, MEG, and TMS will be used to study the neural basis of rapid attentional guidance based on scene context and episodic memory, resulting in a full characterization of when, where, and how context- and memory-based expectations interact with attentional templates in visual cortex and beyond. The powerful effects of scene context on object recognition will be studied by testing how context-disambiguated objects are represented in visual cortex, characterizing when context-based predictions bias object processing, and testing for causal interactions between scene- and object-selective pathways in visual cortex. NATVIS will study how the brain uses real-world regularities to support object grouping and reduce clutter in scenes, modelling the cortical representation and neural dynamics of multiple simultaneously presented objects as a function of positional regularity. Finally, advanced multivariate modelling of fMRI data will test the functional relevance and representational content of internally generated templates that are hypothesized to facilitate object detection in scenes. This program of research tackles the next frontier in the neuroscience of high-level vision and attention, embracing the complexity of naturalistic vision.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences neurobiology cognitive neuroscience
- natural sciences computer and information sciences artificial intelligence computer vision object detection
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2016-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
6525 XZ Nijmegen
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.