Objective
Musculo-skeletal conditions are the most common causes of severe long-term pain and physical disability, affecting hundreds of million of people across the world and with a cost to society that Swedish health economists have calculated to be by far the hig hest, even compared to brain and mental diseases added together. Therefore, the demand for biomaterials to replace bone functions and improve quality of life is rapidly increasing. Today's implants have a variety of shortcomings related to their fixation, and, unlike natural bone, cannot self-repair or adapt to changing physiological conditions. Thus, an ideal solution, and a scientific research challenge, is to develop bone-like biomaterials that will be treated by the host as normal tissue matrices and induce cell penetration and proliferation after implantation while their mechanical properties match those of the tissue to be repaired (low density, low stiffness, and high strength). The proposed work is focused on the development and evaluation of novel adaptive dense inorganic-organic composite biomaterials with features controlled down to the nano-level that will combine optimum mechanical properties with different degrees of controlled resorbability. In a step-by-step approach, a wide spectrum of materi als with different organic components and micro-structural architecture will be fabricated by infiltrating inorganic porous scaffolds with different resorbable polymers. These dense materials will have better mechanical properties than porous ceramic scaffolds alone. Also, during their biodegradation, there will be a programmed unmasking of different micro-architectures, chemical patterns, and porosities, in order to promote bone ingrowth while maintaining the mechanical stability of the implant-tissue inter face. The proposed study will therefore allow one to design and optimize new bone implants with improved osteo-integration and long-term mechanical integrity.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology industrial biotechnology biomaterials bioplastics polylactic acid
- engineering and technology materials engineering composites
- natural sciences chemical sciences inorganic chemistry alkaline earth metals
- medical and health sciences medical biotechnology tissue engineering
- medical and health sciences medical biotechnology implants artificial bone
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP6-2002-MOBILITY-6
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
OIF - Marie Curie actions-Outgoing International Fellowships
Coordinator
BADAJOZ
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.