Skip to main content

Thermodynamic Stabilization by Interface Engineering

Objective

"This GF proposal concerns nano-crystalline (NC) metallic alloys, unique materials having extremely small crystals (grains) which exhibit significantly improved mechanical properties over their conventional coarse-grained counterparts. Yet their inherently-large fraction of internal interfaces (grain boundaries, GBs), associated with excess energy, leads to coarsening of their structure at elevated temperatures during either fabrication, processing or service life. This results in a rapid deterioration of their properties, rendering them unsuitable for many applications. Compared with conventional, kinetic stabilization of NC alloys, which is limited and temporary in nature, the approach proposed here is of ‘Thermodynamic Stabilization by Interface Engineering’ employing solute segregation: alloying with elements which preferentially migrate to GBs to substantially reduce their excess energy, leading to a stable, tunable nano-scale grain size even at high temperatures. Employing a thermodynamic approach for engineering the structure and chemistry of interfaces in these materials stands a good chance of overcoming their fundamental stability hurdle with nature’s blessing. The main materials to be studied are iron-based alloys. In particular, NC iron-magnesium alloys have the potential for exceptional absolute and specific strength, exceeding that of the hardest steels. Experiments will be combined with mesoscale and atomistic simulations of thermodynamic, kinetic and mechanical properties. This international interdisciplinary research involves MIT (USA), Technion (Israel) and WWU (Germany), bridges physical metallurgy, nanotechnology and interface science. It will result in a deeper fundamental understanding of energetics and kinetics in NC alloys; tools for designing stable NC alloys with tailored mechanical properties; and commercialization of successful alloys. It shall thus strengthen the EU ""metallurgical infrastructure"" according to the EC’s Metallurgy Road Map."

Field of science

  • /engineering and technology/materials engineering/metallurgy
  • /engineering and technology/nanotechnology
  • /engineering and technology/materials engineering/crystals

Call for proposal

H2020-MSCA-IF-2016
See other projects for this call

Funding Scheme

MSCA-IF-GF - Global Fellowships

Coordinator

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Address
Senate Building Technion City
32000 Haifa
Israel
Activity type
Higher or Secondary Education Establishments
EU contribution
€ 263 385

Partners (1)

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
United States
Address
Massachusetts Avenue 77
02139 Cambridge
Activity type
Higher or Secondary Education Establishments