Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Bell Experiment on Quantum Optomechanical Microresonators

Objective

Experimental demonstration of superposition states of massive systems, often referred to as Schrödinger cat states, has been an exciting research line of several fields in quantum physics. There have been many impressive experiments with a variety of different systems over the past years and research along these lines is still highly popular.
While the field of optomechanics, which is based on massive mechanical oscillators coupled to optical fields through the radiation pressure force, is ideally positioned to realize such measurements and hence test the boundaries between classical and quantum theory, in this proposal we want to take one step beyond purely curiosity-driven exploration of quantum states of large systems. In particular, we will perform experiments using optomechanical systems that are not only of interest for testing the foundations of quantum physics, but will actually have a real potential application in quantum information processing: we are proposing to realize an entangled state between two micro-fabricated, on-chip mechanical resonators that are coupled to laser light at telecommunications wavelengths. Such a system will be directly applicable to realizing quantum memories with truly tailorable properties that can distribute quantum information over large distances. The basic idea is to initialize two mechanical resonators in their quantum ground state and to create entanglement through Raman scattering and single-photon post-selection. The quantum state will be verified through a standard entanglement measure, as well as by violating a Bell inequality with this massive, entangled state. The exact technique, as well as advanced experiments, is discussed in detail in this proposal.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2016

See all projects funded under this call

Coordinator

TECHNISCHE UNIVERSITEIT DELFT
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 165 598,80
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 165 598,80
My booklet 0 0