Objective
Condensible substances, which undergo a phase change from gaseous to liquid or solid condensed form, have a profound impact on planetary atmospheres, and are central to the determination of most key aspects of a planet's climate. The three phases of water operating in Earth's present climate provide the archetype for condensible processes in climate dynamics, but the dawning age of exoplanet discovery and characterization requires that the understanding of phase change effects be expanded far beyond the situations familiar from the study of Earth's climate, or indeed of the climate of any Solar System planet. The goal of this project is to pioneer the advances needed to understand condensible climate dynamics for the vastly broader range of condensible substances, thermodynamic and planetary configurations presented by the growing catalogue of exoplanets. The emphasis will be on the smaller range of planets (super-Earth to Earth mass or size class), which need not have hydrogen-dominated atmospheres and therefore present a richer and highly challenging variety of possible condensible behavior. This class of planets includes all planets that are potentially habitable for Earthlike life, but even planets that are far from habitable shed light on essential features of planets in the Universe, and will be studied. The work will embrace both small scale buoyancy-driven turbulent convection and planetary scale circulations. Idealized numerical simulations, buttressed by theoretical analysis will be employed. Particular emphasis will be put on aspects of exoclimate that are amenable to probing by current observations and improved observational techniques likely to become available in the coming decade. Such properties include cloud properties observable through transit-depth spectra and dayside/nightside temperature and composition contrasts observable through phase curve observations.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences astronomy planetary sciences planets exoplanetology
- natural sciences physical sciences astronomy planetary sciences planets giant planets super-Earths
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2016-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
OX1 2JD Oxford
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.