Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Probing chemical dynamics at surfaces with ultrafast atom pulses

Objective

Ultra-short light pulses have become invaluable in time-resolved studies in chemistry and physics. But many important processes are initiated by collisions. While lasers have revolutionized experiments using light pulses, experimentally proven concepts for producing ultra-short pulses of neutral matter are still in their infancy. Hence, our ability to control when a collision occurs is still extremely limited. Recently, we have reported bunch-compression photolysis, the first demonstrated method for producing ultra-short pulses of neutral matter. Here, photolysis of jet-cooled hydrogen iodide is carried out with femto-second laser pulses whose frequency bandwidth has been spatially ordered. Thus, fast H-atom photoproducts overtake slow ones, producing an ultra-short pulse.The central objective of this project is to develop bunch-compression photolysis as a tool for ultrafast timing experiments involving collisions of ultrashort pulses of H-atoms at synchronously photo-excited solid surfaces. Bunch-compression photolysis allows collisions at a surface to be synchronized with photoexcitation on the ps time scale, opening up new ways to study the dynamics of collisions at selectively photo-excited surfaces that have not yet relaxed. Studies on collision dynamics involving excitons produced in 2D semiconductors is one exciting direction for this work. Experiments on synchronized H atom collisions with vibrationally excited surfaces prepared by infrared photoexcitation is another - this enables kinetics experiments with surface site-specificity as well as the direct observation of reaction intermediates. The work and ideas presented here show how to overcome the most challenging barrier to a new class of time-resolved dynamics experiments, opening new frontiers in the study of surface chemistry, where we will begin to understand how selected degrees of freedom of the solid influence collision dynamics and reaction rates.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-ADG - Advanced Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2016-ADG

See all projects funded under this call

Host institution

MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 499 356,27
Address
HOFGARTENSTRASSE 8
80539 MUNCHEN
Germany

See on map

Region
Bayern Oberbayern München, Kreisfreie Stadt
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 499 356,27

Beneficiaries (1)

My booklet 0 0