Objective
Water scarcity is an urgent global challenge and one of the greatest societal threats posed by climate change. Despite growing concern over water availability, processes to expand water supplies beyond current freshwater reserves, such as desalination and wastewater reclamation, still suffer from insufficient rejection of contaminants and relatively high energy requirements. Nanofluidic technologies have the potential to revolutionize water treatment owing to the extraordinary transport characteristics of confined pores. The objective of the proposed project is to develop a new nanofluidic device—the osmotic diode—for voltage-driven desalination and pumping. To control water and ion transport, the device requires a nanopore with tailored asymmetric surface charge. An applied voltage difference can be used to drive water molecules through the nanopore while ions are rejected, desalinating source water. The system is advantageous because permeability and selectivity properties can be tuned based on nanopore characteristics, and it offers improved versatility compared to existing desalination processes. To realize the technology, the proposed work will (i) fabricate a single pore osmotic diode with tailored surface charge, (ii) characterize water transport across such a nanopore utilizing ultrasensitive flow measurement techniques, and (iii) use knowledge from the single pore system to scale up performance to many-pored membranes. Throughout the project, advanced modeling techniques will be utilized to fundamentally understand transport and further optimize the system. The proposed research action will address Horizon 2020 Societal Challenges related to water security and resource efficiency while advancing the field of nanotechnology through the development of new fabrication and flow measurement methods. The research action will also represent the first proof-of-concept for an osmotic diode system and lay the foundation for further commercialization of the process.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology environmental engineering water treatment processes wastewater treatment processes
- agricultural sciences agricultural biotechnology
- engineering and technology nanotechnology
- engineering and technology chemical engineering separation technologies desalination
- natural sciences earth and related environmental sciences atmospheric sciences climatology climatic changes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2016
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75794 PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.