Skip to main content

Superconducting Spintronics for Highly Energery Efficient Cryogenic Memory Applications

Objective

The dissipation of heat in traditional silicon (CMOS) based electronics is a major source of inefficiency and environmental impact. Superconductors are, by nature, dissipationless. Computing via logic circuits based on Josephson junctions is also faster, but the largest remaining problem is the lagging development of low-temperature memory. To achieve the promised efficiency increases of these computers requires a new type of low-temperature memory architecture.
Traditionally considered competing phenomena, when artificially juxtaposed a wealth of physics at the interface between superconductors and ferromagnets emerges. Spin-polarised Cooper pairs are capable of surviving inside a ferromagnet over much longer distances than the regular (spin-singlet, anti-parallel) pairs. This new type of Cooper pair is the building block for super-spintronics; leading to a dissipationless spin-current combined with spintronic devices.
Europe risks being left behind by large US research efforts such as the IARPA C3 programme. SUPERSPIN will take advantage of spin-polarised Cooper pairs for the promising application of cryogenic memory, where information can be stored by either the state of the system (superconducting or normal), or in the phase difference between superconductors across a Josephson junction. The outgoing host Prof. Birge is the world leading expert in ferromagnetic Josephson junction devices for cryogenic memory application. The fellow will be fully integrated in his IARPA C3 funded laboratories and through the SUPERSPIN programme, of exploring candidate materials systems and developing prototypical devices, will acquire all the skills and knowledge necessary to develop these exciting advances to application the E.U. during the return phase of the project.
Through SUPERSPIN, the fellow will broaden his scientific background, develop complementary knowledge in new areas, bring new knowledge from the TC host to the E.U. and increase his chances of success in academia

Coordinator

UNIVERSITY OF LEEDS
Net EU contribution
€ 251 857,80
Address
Woodhouse Lane
LS2 9JT Leeds
United Kingdom

See on map

Region
Yorkshire and the Humber West Yorkshire Leeds
Activity type
Higher or Secondary Education Establishments
Other funding
€ 0,00

Partners (1)

Partner

Partner organisations contribute to the implementation of the action, but do not sign the Grant Agreement.

MICHIGAN STATE UNIVERSITY
United States
Net EU contribution
€ 0,00
Address
Administration Building 360
48824 East Lansing, Michigan

See on map

Activity type
Higher or Secondary Education Establishments
Other funding
€ 160 130,40