Objective "Project FLOWSPA (Floating Offshore Wind Support Platform Assembly) will demonstrate the feasibility of an innovative floating offshore wind foundation structure “Starfloat” that combines “spar” technology with “semi-submersible” technology to provide a compact and cost effective low motion platform for supporting large capacity wind turbines at deep-water offshore wind farm sites. Energy analysts have predicted that, if a viable and cost effective technology can be delivered, the deep-water offshore wind market in Europe could meet 50% of Europe’s electricity requirement by 2050. Unlike competitor technologies the simple scalable ""Starfloat"" is designed for construction at existing shipbuilding facilities with restricted water depth thus opening up construction opportunities for European shipyards that are currently in decline. The innovative floating foundation design and assembly process takes significant cost out of the CAPEX of deep water floating offshore wind projects and removes the need for risky offshore marine operations. ""Starfloat"" therefore has the potential to be disruptive to the current perceived limitations of the offshore wind industry by bring floating offshore wind into the same levelised cost of energy (LCOE) as fixed foundation offshore wind. This will allow the project financing of deeper water wind farm sites, where the wind resource is stronger and more reliable, to be exploited using relatively low risk technology with the end result of reducing carbon emissions and reduced dependency for Europe on imported fuels. It also has the benefit of bringing steel fabrication work to declining shipyards and assembly work to deep-water offshore construction sites that are currently seeing a sharp decline in activity with the fall in the oil price and the collapse of the new shipbuilding market." Fields of science engineering and technologycivil engineeringwater engineeringocean engineeringengineering and technologyelectrical engineering, electronic engineering, information engineeringelectrical engineeringpower engineeringelectric power generationsocial scienceseconomics and businesseconomicsengineering and technologyenvironmental engineeringenergy and fuelsrenewable energywind powerengineering and technologymechanical engineeringvehicle engineeringnaval engineeringsea vessels Programme(s) H2020-EU.3.3. - SOCIETAL CHALLENGES - Secure, clean and efficient energy Main Programme H2020-EU.2.1.1. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT) H2020-EU.2.3.1. - Mainstreaming SME support, especially through a dedicated instrument Topic(s) SMEInst-09-2016-2017 - Stimulating the innovation potential of SMEs for a low carbon and efficient energy system Call for proposal H2020-SMEInst-2016-2017 See other projects for this call Sub call H2020-SMEINST-1-2016-2017 Funding Scheme SME-1 - SME instrument phase 1 Coordinator OCEAN FLOW ENERGY LTD Net EU contribution € 50 000,00 Address Hotspur house 15 east percy street NE30 1DT North shields United Kingdom See on map Region North East (England) Northumberland and Tyne and Wear Tyneside Activity type Private for-profit entities (excluding Higher or Secondary Education Establishments) Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 21 429,00