Objective
In neurons, endoplasmic reticulum (ER) organelle shows physical continuity between dendrites, cell body and axonal presynaptic terminals, and has been termed “a neuron within a neuron”. The importance of ER in axons is suggested by the fact that mutations of ER-shaping proteins result in hereditary spastic paraplegia (HSP), a motor axon degeneration disease. ER is present in presynapses, and mutations of ER-shaping proteins disrupt synaptic morphology or function. However, the physiological roles of ER distribution in this context are largely unknown.
The time to study the roles of ER distribution in presynaptic terminals is opportune: new HSP-associated genes encoding ER proteins are being identified continuously in human patients; studies in non-neuronal cells identified several HSP-gene-encoded proteins as ER-shaping proteins - to date these have not been examined in synapses; there is increasing data about the nature and roles of contact sites between ER and other cellular structures, whose functions are required at synapses. Drosophila is a successfully used model for neuronal cell biology and degeneration, which reduces use of regulated vertebrates; my sponsor has developed tools to detect impaired neuronal ER organisation in Drosophila; and emerging microscopy techniques allow ultrastructural analysis and 3D reconstruction of the ER network.
My work will specifically examine the distribution and role of ER at presynaptic level for the first time, and mechanisms of dysfunction that are relevant for human neurodegenerative diseases. I will study neuromuscular junctions in wild-type and in Drosophila mutants for HSP ER-shaping proteins, to understand the roles of these proteins and the consequences of any altered distribution for local trafficking and organelle function. To address this aim, I will use electron and super-resolution microscopy, and using light microscopy markers I will undertake structural and functional characterization of ER distribution.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences neurobiology
- natural sciences physical sciences optics microscopy super resolution microscopy
- natural sciences biological sciences biochemistry biomolecules proteins
- natural sciences biological sciences cell biology
- natural sciences biological sciences genetics mutation
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2016
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
CB2 1TN CAMBRIDGE
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.