Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Critical Slope Gross-Zagier formula and Perrin-Riou's Conjecture

Objective

The main objective of this project is to prove a p-adic Gross-Zagier formula for the critical slope p-adic L-functions attached to p-ordinary modular forms. As we will explain in the main body of this proposal, such a formula will lead, among other things, to a full proof of a conjecture of Perrin-Riou (that gives a precise comparison between p-adic Beilinson-Kato elements and Heegner points).

Our approach will rely heavily on the theme of p-adic variation and will consist of three major steps (which, we believe, are independent on their own right):

As the first step, we would like to interpolate the Heegner cycles associated to modular forms along Coleman families. This has been carried out for p-ordinary forms by Benjamin Howard (and complemented by the work of Francesc Castella, befitting our goals).

The second step is to carry out a construction of the two-variable p-adic L-function for the base change of a Coleman family (over an affinoid A, say) to the suitable imaginary quadratic field. We note here that such a p-adic L-function over the field of rationals has been constructed by Joel Bellaiche.

The third and final step is to prove p-adic Gross-Zagier formulae for individual (p-non-ordinary) members of the family. This has been carried out by S. Kobayashi for weight 2 forms; we aim to provide a generalisation of his work to higher weights.

Noting that p-adic height pairings readily deform well in families (thanks to the work of Denis Benois, in this context), we aim to prove a A-adic Gross-Zagier formula for the cyclotomic derivative of the base change p-adic L-function. This formula, when specialized to weight 2, will yield the desired formula.

In the duration of this fellowship, we also intend to carry out several projects with our long-term collaborator Antonio Lei. We shall provide a brief account for these in the main body of our proposal.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-GF - Global Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2016

See all projects funded under this call

Coordinator

UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 152 988,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 152 988,04

Participants (1)

Partners (1)

My booklet 0 0