Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Active Resonator Development for nano-EPR of single crystal proteins

Objective

In order to keep up with societal challenges of the 21st century, we must devise sustainable ways to efficiently store and retrieve energy from hydrogen. This “hydrogen economy” is one path for the future of clean energy. Nature’s solution to this challenge is a branch of enzymes called hydrogenases which typically use an organometallic active-site to reversibly split molecular hydrogen to hydrogen-ions and energy, in the form of electrons. Here, we choose to focus on [FeFe]-hydrogenase due to its high catalytic behavior. To understand these metallo-enzymes we must be able to study the enzymes grown as a single crystal. Single crystal protein Electron Paramagnetic Resonance (EPR) experiments are the ultimate method to study the paramagnetic states of hydrogenases and obtain the full magnetic interactions reflecting the electronic structure of the active site. Ultimately the catalytic activity of the hydrogenase can be understood by relating the information of the magnetic principal axes to the known protein structure of the enzyme. However, the application of single-crystal EPR is severely limited by the small crystals sizes that are usually available (sub-nanoliter to nanoliter volumes). The Key Enabling Technologies outlined in this fellowship have the potential to increase the sensitivity of EPR by a factor of 30 through the application of highly innovative concepts based on planar micro-resonators (PMR). This technology provides the sensitivity needed for the applicant to be the first to study single crystals of the [FeFe]-hydrogenase enzyme with EPR and advance the “hydrogen economy”.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-EF-ST - Standard EF

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2016

See all projects funded under this call

Coordinator

MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 171 460,80
Address
HOFGARTENSTRASSE 8
80539 MUNCHEN
Germany

See on map

Region
Bayern Oberbayern München, Kreisfreie Stadt
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 171 460,80
My booklet 0 0