Objective
Solar energy, attractive source of energy being it free and endless, can be converted into electricity by means of a Concentrating Solar Power (CSP) plant. However, the biggest limit of such technology is the intermittency and the diurnal nature of the solar light. For their future development, CSP plants need to be coupled with storage system. Among the existing thermal storage systems, the ThermoChemical Storage (TCS) is one of the most promising technology and it is based on the exploitation of the reaction heat of a reversible chemical reaction. Just recently, perovskite systems have drawn increasing interest as promising candidates for TCS systems. Perovskites are generally indicated as ABO3, with A and B the two cations of the structure and with O the oxygen. They exhibit a continuous, quasi-linear oxygen release/uptake within a very wide temperature range. Their reduction being endothermic consists in the heat storage step, while the exothermic oxidation releases heat when it is required. The overall objective of the proposal is to study more earth abundant compositions (Ca-, Fe-, Mn- or Co-based) of perovskites for identifying one or more promising candidate storage medium for the design and the realization of a prototype of a multilevel-cascaded TCS system. It aims at solving the no-easy solution problem of the wide temperature range to be covered by a TCS system for CSP plant by using perovskites with different operating temperatures cascaded from the lowest operating temperature to the maximum one. As main result it could bring the TCS systems to a level closer to the market scale. The research project will be developed in collaboration with the IMDEA Energy Institute and the Materials Science and Engineering Department of Northwestern University. This project idea is totally in line with the current strict global energy and environmental politics and also with the Horizon 2020 objectives.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology materials engineering crystals
- engineering and technology mechanical engineering thermodynamic engineering heat engineering
- natural sciences chemical sciences electrochemistry electrolysis
- natural sciences physical sciences atomic physics
- engineering and technology environmental engineering energy and fuels renewable energy solar energy concentrated solar power
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-GF - Global Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2016
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
28006 MADRID
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.