Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Demonstration of Quantum Supremacy in A Photonic Device

Objective

Quantum computers are predicted to have capabilities beyond what is currently available using classical physics. The effort to build a universal quantum computer is a global one. Different approaches are being adopted to control, manipulate and store quantum information, trapped-ions, electron-spins and single-photon modes. However, as the field of quantum computation currently stands one fundamental question still remains: Do quantum computers provide a genuine advantage over their classical counterparts? Determining the answer to this question is the aim of this project. To do this we will carry out an experiment known as BosonSampling: The interference of many single-photon modes across a large interferometric network. It is strongly believed that no classical algorithm could efficiently simulate such an experiment, and thereby performing it in the laboratory will provide the strongest evidence to date that quantum mechanics permits computation beyond what is possible classically. It has been predicted that we will reach such a level of experimental complexity near the 20-30 photon level, thus it is important to move beyond the small scale demonstrations of 3 or 4 photons performed to date. The two main obstacles which have hindered the field moving towards larger BosonSampling experiments are access to multi-photon sources and low loss interferometric networks. In this proposal we will make use of state-of-the-art photon sources based on light emitting quantum dots coupled to photonic crystal waveguides which have demonstrated coupling efficiencies of over 98% to waveguide structures. Finally, to tackle photon loss we will take full advantage of high quality and low loss free-space optical components to build an interferometric network. The optical modes will be encoded as separate temporal modes, thus reducing the experimental complexity of the interferometer. We aim to perform a 10 photon BosonSampling experiment by the end of this two year fellowship.

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2016

See all projects funded under this call

Coordinator

KOBENHAVNS UNIVERSITET
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 200 194,80
Address
NORREGADE 10
1165 KOBENHAVN
Denmark

See on map

Region
Danmark Hovedstaden Byen København
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 200 194,80
My booklet 0 0