Objective
Global ocean change (GOC, including warming and acidification) poses one of the largest threats to marine fisheries and aquaculture. Yet, there are still few predictive consequences, due to the limited understanding of species’ in situ responses. Recent studies suggest that spatial differences in environmental conditions influence physiological tolerances of marine populations. This project tests the hypothesis that environmental variability of multiple stressors (temperature, pH, salinity) enhances physiological hardiness of sensitive early life-stages of an economically valuable mollusk, the mussel Mytilus galloprovincialis. The project implements a novel, three-pronged, multidisciplinary approach using (1) population comparisons to assess performance of mussels from sites of low and high environmental variability, (2) mild stress exposures to test for enhanced physiological performance in the field, and (3) larval cultures to assess proteomic responses to temporal variability of multiple stressors and carryover effects to juveniles. This project includes collection of oceanographic time-series data at field sites (including at an aquaculture farm), with state-of-the-art pH sensors, to identify frequency of stress events and inform experimental design. This still rare approach, using in situ data with laboratory studies, improves environmental realism in GOC studies. The project addresses a crucial gap in the current understanding of coastal environmental variability and multiple stressors and has direct application to aquaculture practices. By combining the researcher’s and host’s expertise on marine physiology related to GOC pressures, this project will advance innovations in the field of GOC biology, state-of-the-art pH sensor technology transfer, and applied proteomics, and will thus become an important step forward in the career of a Researcher dedicated to GOC biology, and strengthen European expertise in these fields.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- agricultural sciences agriculture, forestry, and fisheries fisheries
- natural sciences biological sciences biochemistry biomolecules proteins proteomics
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
- medical and health sciences basic medicine physiology
- natural sciences biological sciences zoology invertebrate zoology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2016
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
28006 MADRID
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.