Objective
We will study dynamical phenomena in strongly interacting quantum systems, which currently receive increased attention due to recent experimental, numerical and theoretical breakthroughs. Our research will push the limits of the state of the art of numerical simulations in this context by bringing together experts (the ER and the host group) on different aspects of this topic in an outstanding research environment in Munich with an excellent infrastructure and a clustering of theoretical and experimental groups with the potential to world class collaborations.
Our research will gravitate around the important question of the mechanism of thermalization (and its absence) in isolated quantum systems and tackle outstanding questions, such as the existence of many-body localization (MBL) in higher dimensions and the nature of anomalous thermalization in subdiffusive systems. The focus of this project is the study of the MBL transition, which is a dynamical phase transition driven by disorder, separating disordered correlated systems in a thermal, metallic phase and a localized, insulating and non-ergodic phase, depending on the strength of the disorder. Our detailed numerical transition will help to obtain a deeper understanding of the MBL transition and of states with localization protected quantum order.
We will also study systems with time dependent Hamiltonians, most importantly those with a periodic time dependence (Floquet systems), which have been shown to exhibit fascinating phenomena such as a spontaneous breaking of time translation symmetry in Floquet time crystals and will aim to discover new types of time order in these systems.
The timeliness and expected outstanding quality of our results will establish the ER as a leader in the field of numerical studies of dynamical strongly correlated systems and the environment in Munich will make him highly visible in an international context, greatly enhancing his leadership skills and career perspective.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences condensed matter physics
- natural sciences mathematics pure mathematics algebra linear algebra
- natural sciences physical sciences quantum physics
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering computer hardware supercomputers
- natural sciences physical sciences electromagnetism and electronics superconductivity
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2016
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
80333 Muenchen
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.