Objective
"The open ocean is the largest biome on Earth, yet it is the least protected. A major obstacle to its conservation lies in the fine-grained understanding of how marine organisms are affected by the ocean dynamics. In the last decades remote sensing and bio-logging drastically increased our understanding to how phytoplankton (that can be observed from space as ocean color) and large marine animals (that can be followed with sensors directly attached to them) responds to oceanic turbulence down to the mesoscale (few weeks-months, 10-100 km). A major knowledge gap still concerns the so-called ""intermediate trophic levels"" (ITLs, i.e. zooplankton and micronekton,) and how mesoscale currents (such as fronts and eddies) affect them. This is the focus of the MECODIHR project.
The project uses an unprecedented combination of remote-sensing, and modelling on a multi-disciplinary in-situ database collected in the North-West Atlantic to identify patterns in the distribution of ITLs, relate them to physical structures and biogeochemical observations and make hypotheses about why such relationships arise. High-resolution state-of-the-art modelling allows to test the validity of the formulated hypotheses, clarify the mechanisms behind observed co-localisations and expand the extent of findings. High resolution in-situ measurements and modelling allows to approach how submesoscale dynamics (and its inter-seasonal variability) affect the distribution of ITLs. The MECODIHR results, acquired between the two multidisciplinary highly-reknown oceanographic laboratory of the University of Washington (outgoing phase : 2 years) and the Université de Bretagne Occidentale (incoming phase : 1 year), will provide critical information for open ocean conservation. The MECODIHR project will also train Dr. Della Penna with a rare combination of skills (including scientific, communicative, technical and transferable skills) that are fundamental to face the future challenges of marine sciences."
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences databases
- engineering and technology materials engineering colors
- engineering and technology environmental engineering remote sensing
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
- natural sciences earth and related environmental sciences oceanography
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2016
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
29200 BREST
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.