Objective In the face of global change and a rapidly changing world ecologists must understand the fundamental components of ecological systems. Unsurprisingly, much research has focused on the trophic links of which ecosystems are constructed. However, despite this attention one particular type of trophic link, scavenging, has been relatively ignored. This is despite estimates showing that scavenging accounts for more energy transfer in comparison to predation, clearly demonstrating its crucial role in determining ecosystem dynamics. Yet scavenging is a still a poorly understood behavior as despite its prevalence across predators, little explanation is available for the enormous level of variation in the level of scavenging both across species and with them. SCAVENGER proposes to address this imbalance using a state of the art simulation approach recently developed by the fellow to test the ecological and physiological drivers of scavenging behaviors and explore the importance of this behavior in extinct, extant and potential future ecosystems. By using a combination of biomechanics, energetics and macroecology in an agent based modeling framework I will test the drivers of scavenging efficiency focusing on the roles of body size, locomotion, biomechanics, population dynamics and environmental factors such as temperature. After mapping out the drivers of scavenging this approach will be applied to both understanding the role of scavenging in an extinct system, were the role of scavenging in early Hominds will be explored, and in future scenarios, were systems of conservation and management importance will be identifies as part of a secondment at the Zoological Society of London. The SCAVENGER proposal will allow me to address a substantial gap in the understanding of an important ecological component, develop a novel approach to foraging ecology and apply it in multiple fields, and provide me with a vital stepping stone towards becoming a future leader within ecology. Fields of science agricultural sciencesagriculture, forestry, and fisheriesfisheriesnatural sciencesbiological sciencesecologyecosystemsnatural sciencesbiological sciencesbiological behavioural sciencesethologybiological interactionsnatural sciencesbiological sciencesbiophysicsnatural sciencesearth and related environmental sciencesatmospheric sciencesclimatologyclimatic changes Keywords Agent Based Modeling Scavenging Foraging Metabolic theory Trophic Ecology Programme(s) H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions Main Programme H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility Topic(s) MSCA-IF-2016 - Individual Fellowships Call for proposal H2020-MSCA-IF-2016 See other projects for this call Funding Scheme MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF) Coordinator THE UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS Net EU contribution € 183 454,80 Address North street 66 college gate KY16 9AJ St andrews United Kingdom See on map Region Scotland Eastern Scotland Clackmannanshire and Fife Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00