Objective
The weirdness of quantum physics is among the most counterintuitive properties of nature. It is traced back to the early theoretical discussions on entanglement between Albert Einstein and Niels Bohr in the 1930s, which was then experimentally observed in the 1980s and became central in quantum information processing, communication and sensing schemes over the past decade. Utilizing the quantum nature of photons has so far been limited to small number of qubits, while being performed on table-top experimental setups composed of a large number of macroscopic components. This sets a limit to the complexity and efficiency of experiments that can be carried out. In HyQuIP, hybrid quantum integrated photonic circuits will be developed to generate, manipulate, and detect photons all on-a-chip to remove the bottlenecks currently limiting scalability of quantum science experiments. Our integrated approach will realize important milestones for fundamental understanding of the quantum nature of photons in addition to on-chip quantum computing to realize the ambitious schemes that have been put forward by theorists over the past decade. We will demonstrate the first fully-integrated, from generation to detection, quantum transceiver with multi-qubit inference on chip. Furthermore, we will explore the exciting regime of reducing the bandwidth of single-photons to zero in a dynamic photonic device. HyQuIP will not only open up new fundamental tests based on the quantum nature of reality and entanglement, it will also open up new applications: In quantum metrology providing superior sensitivity to classical schemes. Also in quantum imaging and lithography where multi-qubit quantum states can achieve super resolution beating the Rayleigh criterion for diffraction limit. The possibility to manipulate and measure quantum states on a single chip beyond two particles is bound to boost the implementation of practical quantum computing schemes.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences computer security cryptography
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering computer hardware quantum computers
- natural sciences physical sciences quantum physics quantum optics
- natural sciences physical sciences electromagnetism and electronics superconductivity
- natural sciences physical sciences theoretical physics particle physics photons
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2016
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
100 44 STOCKHOLM
Sweden
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.