Objective
Viral diseases represent one of the world’s highest socio-economic burdens. Increased global trade and travel, climate change resulting in shifting viral vectors, and the emergence of new and often deadly viruses is inevitable. Therefore, detailed understanding of the complexity of virus particles and the development of new model systems to study them, will be essential to develop new research, diagnostic, and therapeutic tools. The structural changes that occur during the initial contact between a virus and its host remains one of the major challenges in infection biology. Until recently, the investigation of viral nano-architecture and dynamic changes that occur in virus particles during the infectious lifecycle was limited to methods, such as EM, with no capacity to capture dynamic events or define molecular specificity. The goal of the proposed project is to create a new minimal model of virus infection based on cell-derived membrane blebs. The model will be amenable to novel super-resolution microscopy (SRM) methods that allow the visualization of viral structures at resolutions of tens of nanometers. Recently developed analytical tools like single-virion averaging allows the generation of precise models from hundreds of events. This affords unprecedented insights into the biological and biophysical requirements of virus infection. Furthermore, we aim to investigate the dynamics of virus architectural changes during the first stages of infection, particularly at the membrane level, by combining single-molecule techniques with our new model-system. While initially aimed at investigating protein structure-function relationships within the prototypic poxvirus, vaccinia, the model system and imaging developments outlined will be broadly applicable to a wide range of biological systems including other viruses. Thereby, this proposal looks to advance the field of infection biology into the nanoscale.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences microbiology virology
- natural sciences physical sciences optics microscopy super resolution microscopy
- natural sciences biological sciences biochemistry biomolecules proteins
- natural sciences physical sciences optics microscopy electron microscopy
- natural sciences earth and related environmental sciences atmospheric sciences climatology climatic changes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2016
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
WC1E 6BT LONDON
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.