Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Generalized geometry: 3-manifolds and applications

Objective

Generalized geometry is a revolutionary approach to geometric structures pioneered by Hitchin in 2003, soon becoming an active topic catching the interest and bringing together the expertise of geometers and theoretical physicists. Generalized complex structures, defined for even-dimensional manifolds, are both a genuinely interesting mathematical structure, providing insight of complex and symplectic geometry, and the suitable notion for some physical theories like mirror symmetry. Odd-dimensional manifolds within generalized geometry have not been satisfactorily studied until the recent introduction of generalized geometry of type Bn and its study in my PhD thesis. There, the case of 3-manifolds drew special attention thanks to the recent Thurston's geometrization theorem and the fact that the type-change locus of a 3-manifold is a link, bringing in knot and link theory. This action combines the generalized geometry expertise of the experienced researcher with the host’s expertise on 3-manifold and knot and link theory in order to set a novel geometrical framework for structures on odd-dimensional manifolds, understand the case of 3-manifolds in depth, and create a two-way bridge between these previously unrelated areas, with innovative applications in both.

Coordinator

UNIVERSITAT AUTONOMA DE BARCELONA
Net EU contribution
€ 170 121,60
Address
EDIF A CAMPUS DE LA UAB BELLATERRA CERDANYOLA V
08193 Cerdanyola Del Valles
Spain

See on map

Region
Este Cataluña Barcelona
Activity type
Higher or Secondary Education Establishments
Links
Total cost
€ 170 121,60