Objective Optical quantum technologies are at the forefront of a forthcoming second quantum revolution, where advances in quantum photonics at the single-photon level are enabling new technologies at accelerating pace: from applications for secure quantum communication, to the realization of quantum simulation and quantum computation protocols. The scaling of quantum photonics, however, has long been restrained by low efficiencies in current photon sources, what limits the complexity of the protocols that are being demonstrated. The host team has very recently succeeded in the fabrication of solid-state single-photon sources about 20 times more efficient than current alternatives. These sources have reached the best possible performance in terms of purity and indistinguishability, as required for scalable applications. In this proposal, the high performance of these devices is combined with the expertise in quantum optics of the applicant to advance the state-of-the-art in quantum photonics to the efficient and high-rate manipulation of multiple single-photons. A new era of larger-scale quantum photonics will be attained by enabling the manipulation of multiple photons past the qubyte threshold of 8 photons. The project will include the demonstration of 10-photon sources with sub-Hertz detection rates; the implementation of heralded entangling gates run at unprecedented rates; as well as the demonstration of multi-photon interference with up to 8-photons in a Boson Sampling machine. This project will thus importantly advance upon the complexity of current multi-photon research, opening a new era of solid-state based quantum optics and photonics. Fields of science natural scienceschemical scienceselectrochemistryelectric batteriesnatural sciencesphysical sciencesquantum physicsnatural sciencesphysical sciencesopticsnatural sciencesphysical sciencestheoretical physicsparticle physicsphotons Programme(s) H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions Main Programme H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility Topic(s) MSCA-IF-2016 - Individual Fellowships Call for proposal H2020-MSCA-IF-2016 See other projects for this call Funding Scheme MSCA-IF-EF-ST - Standard EF Coordinator CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS Net EU contribution € 173 076,00 Address Rue michel ange 3 75794 Paris France See on map Region Ile-de-France Ile-de-France Paris Activity type Research Organisations Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00