Objective
The development of ligands that selectively bind to a given protein surface is a challenging area of research with potential applications in diagnostics, pharmacology or therapy. Current approaches include small molecule screening, the design of medium sized epitope mimetics (e.g. alpha helix mimetics) and directed evolution methodologies (e.g. ribosome display).
In this project, we intend to initiate an essentially unexplored approach: the design from first principles of synthetic ligands derived from helical aromatic oligoamide foldamer backbones bearing proteinogenic side chains to target the surface of a given protein: interleukin 4 (IL4). Helical aromatic amides appear to be well suited for this purpose thanks to their predictable, tunable and stable conformations in solution; their relatively easy synthesis of secondary and tertiary-like structures as large as small proteins; and their high amenability to crystal growth and structural elucidation. Specifically, we intend to explore molecular recognition rules between large (2-15 kDa) aromatic oligoamide foldamers and a target protein surface, and to validate a novel iterative method based on combining covalent attachment and structural characterization.
The proposed strategy thus consists in structure-based iterative design. The following steps will be implemented: 1) synthesis of a small pool of foldamer sequences; 2) covalent attachment of each of them via a disulfide bridge to the surface of a recombinantly expressed IL4 cystein mutant, and screening for foldamer-protein interactions through foldamer helix handedness induction by the chiral protein surface; 3) structural characterization of the interactions, mainly by crystallography, within selected protein-foldamer adducts; 4) design of new and improved foldamers. Ultimately optimized interactions should produce foldamers that bind to IL4 without the assistance of the covalent tether.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology materials engineering crystals
- natural sciences biological sciences biochemistry biomolecules proteins proteomics
- natural sciences earth and related environmental sciences geology mineralogy crystallography
- natural sciences physical sciences optics spectroscopy absorption spectroscopy
- natural sciences chemical sciences analytical chemistry mass spectrometry
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2016
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75794 PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.