Skip to main content

Tuning both the photoluminescence and conductive properties of new COP materials

Objective

The main goal of this proposed project is the synthesis of new hybrid π-conjugated polymers for industrial use, which conductive and optical properties could be fine tuneable by the proper anionic metallacarboranes as doping agents. To achieve our goals two directions were chosen. In the first part we would like to investigate the effect of different boron clusters ([Co(C2B9HnX11-n)2]- X=Cl, Br, I) as doping agents on the conductive and photoluminescence properties of the poly(3,4-ethylenedioxythiophene) (PEDOT). Preliminary results suggest that the earlier used [Co(C2B9H11)2]- doping anion is redoxactive, thus it has a big influence on the formation and the properties of the polymer. Our expectation is that the halogen analogues ([Co(C2B9HnX11-n)2]-=Cl, Br, I) cover a wide range of redoxpotential, thus we can easily modify the properties of the new materials. During the second part we would like to tune both the conductive and photoluminescence properties of the poly(p-phenylene vinylene) (PPV). For this purpose different co-polymer planed to synthetized, which containing different amount of non-doped and self-doped monomer units. (In case of the self-doped polymer the doping anion is covalently linked to the monomer unit). We expect that the ratio of the non-doped and the self-doped has a strong influence both the conductive and photoluminescent properties, moreover the two different properties will be altered by the inclusion of functional side groups.

Field of science

  • /natural sciences/chemical sciences/inorganic chemistry/inorganic compounds
  • /natural sciences/chemical sciences/polymer science

Call for proposal

H2020-MSCA-IF-2016
See other projects for this call

Funding Scheme

MSCA-IF-EF-ST - Standard EF

Coordinator

AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Address
Calle Serrano 117
28006 Madrid
Spain
Activity type
Research Organisations
EU contribution
€ 170 121,60