Objective
Deep neural networks (DNNs) have become a critical tool in natural language processing (NLP) for a wide variety of language technologies, from syntax to semantics to pragmatics. In particular, in the field of natural language inference (NLI), DNNs have become the de-facto model, providing significantly better results than previous paradigms. Their power lies in their ability to embed complex language ambiguities in high dimensional spaces coupled with non-linear compositional transformations learned to directly optimize task-specific objective functions. We propose to adapt Deep NLI techniques to the biomedical domain, specifically investigating question answering, information extraction and synthesis. The biomedical domain presents many key challenges and a critical impact that standard NLI challenges do not posses. First, while standard NLI data sets requires a system to model basic world knowledge (e.g. that ‘soccer’ is a ‘sport’), they do not presume a rich domain knowledge encoded in various and often heterogeneous resources such as scientific articles, textbooks and structured databases. Second, while standard NLI data sets presume that the answer/inference is encoded in a single utterance, the ability to reason and extract information from biomedical domains often requires information synthesis from multiple utterances, paragraphs, and even documents. Finally, whereas standard NLI is a broad challenge aimed at testing whether computers can make general inferences in language, biomedical texts are a grounded and impactful domain where progress in automated reasoning will directly impact the efficacy of researchers, physicians, publishers and policy makers.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences databases
- natural sciences computer and information sciences data science natural language processing
- natural sciences computer and information sciences artificial intelligence computational intelligence
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2016
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
112 57 ATHINA
Greece
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.