Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Biomedical Information Synthesis with Deep Natural Language Inference

Objective

Deep neural networks (DNNs) have become a critical tool in natural language processing (NLP) for a wide variety of language technologies, from syntax to semantics to pragmatics. In particular, in the field of natural language inference (NLI), DNNs have become the de-facto model, providing significantly better results than previous paradigms. Their power lies in their ability to embed complex language ambiguities in high dimensional spaces coupled with non-linear compositional transformations learned to directly optimize task-specific objective functions. We propose to adapt Deep NLI techniques to the biomedical domain, specifically investigating question answering, information extraction and synthesis. The biomedical domain presents many key challenges and a critical impact that standard NLI challenges do not posses. First, while standard NLI data sets requires a system to model basic world knowledge (e.g. that ‘soccer’ is a ‘sport’), they do not presume a rich domain knowledge encoded in various and often heterogeneous resources such as scientific articles, textbooks and structured databases. Second, while standard NLI data sets presume that the answer/inference is encoded in a single utterance, the ability to reason and extract information from biomedical domains often requires information synthesis from multiple utterances, paragraphs, and even documents. Finally, whereas standard NLI is a broad challenge aimed at testing whether computers can make general inferences in language, biomedical texts are a grounded and impactful domain where progress in automated reasoning will directly impact the efficacy of researchers, physicians, publishers and policy makers.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2016

See all projects funded under this call

Coordinator

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS - RESEARCH CENTER
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 82 326,60
Address
KEFALLINIAS STREET 45
112 57 ATHINA
Greece

See on map

Region
Αττική Aττική Κεντρικός Τομέας Αθηνών
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 82 326,60
My booklet 0 0