Objective
Enzymes have established as a new class of catalysts in the field of modern synthetic chemistry and continue to gain in importance. Directed evolution is currently one of the most promising approaches aiming at enzymes with desired catalytic activities and it's potentially directly correlates with the library size that can be screened. One of the most powerful approaches to overcome these limitations is arguable the recently introduced microfluidic droplet technology; this methodology not only allows to quickly screen millions of clones in a cost effective manner, but is also broadly applicable since fluorometric as well as colorimetric assays can be used. Interestingly, even though numerous publication highlight its potential, an unambiguous evidence of its ability to provide synthetically relevant biocatalysts still needs to be furnished. In addition, access to this technology is currently limited to a few academic research groups and thus, this approach requires further implementation to evolve as an easily manageable lab routine in the near future.
This project is designed to unite three competencies: i) the expertise of the Hollfelder Group in regarding micro-engineering and protein engineering in droplets, ii) the empirical knowledge of (bio)chemists at Johnson Matthey in view of economically successful industrial applications of biocatalysts and iii) the strong track record of the experienced researched to successfully solve problems at the biology/chemistry-interface. The objective of the project is to perform a proof-of-principle study by improving a well-known alcohol dehydrogenase for the selective desymmetrization of a meso-diol, thereby giving access to a synthetically sophisticated alcohol. In addition, the final aim is not only to obtain an improved mutant which allows to perform the selected biotransformation efficiently, but also a comparison of varying evolution paths differing in the criteria of hit selection between mutagenesis rounds.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences genetics mutation
- natural sciences chemical sciences organic chemistry alcohols
- natural sciences chemical sciences catalysis biocatalysis
- natural sciences chemical sciences organic chemistry amines
- natural sciences biological sciences biochemistry biomolecules proteins enzymes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-SE - Society and Enterprise panel
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2016
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
EC2V 7AD LONDON
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.