Objective
The experienced researcher, Dr. Guillermo Albareda, and the host supervisor, Prof. Angel Rubio, aim at developing a new predictive and practical approach that overcomes the difficulties that current methods have to treat the correlated electron-nuclear dynamics in complex systems.
Up to now, most of the methods to describe the coupled motion of electrons and nuclei have been based on the Born-Huang expansion that fails to meet the appropriate trade-off between accuracy and efficiency for large systems. Based on the “conditional decomposition” (CD) framework recently introduced by the experienced researcher, the proposed research relies on the premise that the radically different mathematical grounds of the CD approach will lead to a paradigm shift in how ab-initio nonadiabatic molecular dynamics is numerically approached.
The program starts with the fundamental method development based on the CD framework, goes through a systematic performance test to reach the desired accuracy/efficiency trade-off, and will be implemented in a computational platform to be applied to study large systems such as artificial light-harvesting complexes.
Fields of science
- natural sciencescomputer and information sciencessoftware
- natural sciencesphysical sciencesquantum physics
- natural sciencesphysical sciencestheoretical physicsparticle physicsfermions
- natural sciencesphysical sciencesopticslaser physics
- engineering and technologyenvironmental engineeringenergy and fuelsrenewable energysolar energyphotovoltaic
Programme(s)
Funding Scheme
MSCA-IF-EF-ST - Standard EFCoordinator
80539 Munchen
Germany