Objective Colloidal capsules are interesting from the point of view of both physics and application. They can be used for controlled material transport and targeted release, and they have shown tremendous potential for fabricating advanced materials through self-assembly. Recently, such capsules have also been able to propel in carrier fluid by methods including magnetic fields, thermal gradients and bubble propulsion mechanisms. Building on former research by the Experienced Researcher and the main supervisor, as well as new areas of expertise, this project will develop novel fabrication routes for microcapsules with and without functionalised shells (patchy capsules) and propel them over milimeter distances using external fields. The main objective of this action is to experimentally demonstrate propulsion of microcapsules via novel methods involving anisotropic electrodeformation and electrorotation. The experimental research will fill the missing gap in the field of propelling capsules, now mostly presented by computational and theoretical work. There are many examples of collective phenomena in nature, ranging from swarming bacteria colonies to flocking animals, and much attention has been devoted to understanding and imitating their collective properties and behaviour. The research project will give the first experimental realisation of collective capsule dynamics by propelling hundreds of electrorotating capsules at boundaries. Such a system has enormous potential for future technology and will be helpful in many aspects, for example, to lower human infertility, design microrobots for drug delivery, biodegradation of environmental pollutants and control of material properties. This proposal includes both the training of the candidate and a two-way transfer of knowledge with the host institution and partner organisations. The interdisciplinary aspect of the action is strong, involving a combination of soft-matter physics, medicine, engineering and applied sciences. Fields of science natural sciencesphysical sciencesclassical mechanicsfluid mechanicsmicrofluidicsnatural sciencesbiological sciencesmicrobiologybacteriologynatural sciencesearth and related environmental sciencesenvironmental sciencesnatural sciencesphysical sciencescondensed matter physicssoft matter physicsnatural sciencesphysical sciencesmolecular and chemical physics Programme(s) H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions Main Programme H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility Topic(s) MSCA-IF-2016 - Individual Fellowships Call for proposal H2020-MSCA-IF-2016 See other projects for this call Funding Scheme MSCA-IF-EF-ST - Standard EF Coordinator UNIWERSYTET IM. ADAMA MICKIEWICZA W POZNANIU Net EU contribution € 134 462,40 Address Ulica henryka wieniawskiego 1 61 712 Poznan Poland See on map Region Makroregion północno-zachodni Wielkopolskie Miasto Poznań Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00