Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Assembly guided by particle position and shape

Objective

The controlled fabrication of nano/micro metre-scale objects is without doubt one of today’s central goals in science and technology - one essential for the development of nanotechnology and the expansion of microtechnology. Because said objects fall awkwardly between the sizes that can be manipulated by chemistry and those that can be manipulated by conventional manufacturing, the most promising strategy for their fabrication is self-assembly, that is, the autonomous organization of components into structures without human intervention. Indeed, self-assembly promises to revolutionise the way we fabricate industrial and consumer goods, building technologies and optical devices. However, it has limitations: generating complex responsive devices via this method is difficult and hence it is not well suited for producing structures for high-end applications (switchable metamaterials, nano/micro robotics...). Furthermore, the process is inherently inflexible; whilst its components spontaneously assemble, they do so to form only a single set of structures and they must be arduously taylored and selected ad hoc to achieve even this. Recently, I have proved the concept of a new self-assembly method that is not subject to these limitations and therefore has the potential to expand the application base of self assembly into previously untapped areas - such as microrobotics. I have christened this process APPS (assembly guided by particle position and shape). APPS is still in its infancy and this proposal will establish its design rules for the first time and then apply them to make jointed actuators, connected with custom DNA structures, that will have unprecedented and programmable performance on the micron scale.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2016

See all projects funded under this call

Coordinator

LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 171 460,80
Address
GESCHWISTER SCHOLL PLATZ 1
80539 MUNCHEN
Germany

See on map

Region
Bayern Oberbayern München, Kreisfreie Stadt
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 171 460,80
My booklet 0 0