Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Cavity-mediated entanglement of trapped-ion qubit arrays for quantum information processing

Objective

Long-coherence times, high-fidelity individual-ion control and entanglement-mediating Coulomb interactions make trapped-ion qubits a very attractive platform for quantum information processing (QIP). Entangling gates performed by coupling the internal states of ions in the same potential well via their shared motional mode have recently reached the high fidelities necessary for the implementation of quantum error correction protocols which can enable fault-tolerant QIP. However, scaling this type of gate up to long ion chains (>20 ions) is not feasible: large ion numbers lead to crowding of the motional mode spectrum of the chain, eventually preventing addressing of specific modes.
Cavity-mediated ion-photon coupling is a promising avenue to scalability. Photons emitted into a shared cavity mode can be used as a quantum bus to entangle short ion arrays. If implemented between arrays of N ions, this photonic interface benefits from an N-fold enhancement of the ion-photon coupling. Strong collective coupling has been shown with neutral atoms and 3D ion crystals, but has not been performed in a system with individual-qubit control and Coulomb-mediated entanglement capabilities.
Prof.Vuletic’s MIT group operates a multi-zone ion trap which holds several linear ion arrays (of up to 20 ions each) spaced along the trap axis and features an integrated optical cavity. Cooperativity measurements indicate that the strong-coupling regime should be achievable with this apparatus for cavity-mediated entanglement of arrays as short as 5 ions in length. As an MSCA fellow, I will use this trap to pursue the first demonstration of cavity-mediated entanglement of two spatially separate ion arrays. On returning to Oxford, I will implement cavity-enhanced ion-photon coupling between Sr ions in separate vacuum systems, as part of Oxford's drive to build photonically-interfaced quantum computing nodes, which currently employs inefficient free-space ion-photon coupling techniques.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2016

See all projects funded under this call

Coordinator

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 269 857,80
Address
WELLINGTON SQUARE UNIVERSITY OFFICES
OX1 2JD Oxford
United Kingdom

See on map

Region
South East (England) Berkshire, Buckinghamshire and Oxfordshire Oxfordshire
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 269 857,80

Partners (1)

My booklet 0 0