Objective
Stroke and cognitive decline are among the leading contributors to disease burden and long-term disability worldwide. Despite their prevalence, the contributing disease processes are not fully understood. This is in part due to the lack of (early) prediction models and ways to characterize protective mechanisms, which can help to distinguish between patients and healthy individuals before symptoms manifest. Such prediction models can facilitate prevention strategies for adverse cognitive and functional outcomes, thereby enriching patients’ life quality and reduce the economic burden on society. Advanced neuroimaging techniques, such as MRI, have provided additional insight into the underlying disease biology. One major challenge when using neuroimaging techniques lies in the fact that large amounts of data are required to account for variations in clinical presentation and assessment, necessitating the use of dedicated pipelines for extracting phenotypes. However, most pipelines are developed in research settings and tend to fail when applied to real-life clinical cohorts, leading to a subpar use of rich, available patient datasets.
Here, a fully-automated, translational pipeline for extracting MRI phenotypes from data acquired in clinical and research settings is developed with a particular focus on outlining white matter hyperintensities (WMH). WMH are a common phenotype in aging and across diseases; however, group differences are poorly understood. This makes WMH a prime candidate for extracting additional information, which can be used for outcome prediction. The proposed prediction models utilize newly extracted characteristics, clinical/demographic information and a latent variable construct to predict general cognitive decline and outcome after stroke. In particular, the proposed latent variable has shown promise in acting as a surrogate measure for protective mechanisms in stroke patients, where its biological meaning is assessed as part of this project.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- medical and health sciences clinical medicine angiology vascular diseases
- natural sciences computer and information sciences artificial intelligence machine learning deep learning
- medical and health sciences basic medicine neurology stroke
- engineering and technology medical engineering diagnostic imaging magnetic resonance imaging
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-GF - Global Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2016
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
53127 Bonn
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.