Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Advanced Volcanic Ash characteriSaTion

Objective

Advanced Volcanic Ash characteriSaTion

I aim to show how rapid characterisation of volcanic ash particle properties using QEMSCAN® Particle Mineralogical Analysis, an automated mineralogy tool, can help to determine risks to aviation and interpret deformation during volcanic eruptions in order to help predict and respond to volcanic crises.
Through targeted experiments using specialised experimental apparatus, together with checks from cross-correlation and control samples, I will adopt an empirical approach in order to (1) characterise ash particles to identify diagnostic characteristics linked to fragmentation mechanisms that can be used to better inform ash-plume dispersion models and turbine engine resilience tests and to predict ash particle properties during monitored volcanic deformation and (2) challenge conventional wisdom that volcanic deformation is regulated by the strength of ‘intact’ magma and edifice rock and constrain the effects of phase distribution on ash sintering by conducting deformation experiments on progressively sintered ash samples. Through AVAST I will receive training in cutting-edge research techniques and establish intersectoral partnerships, helping to realise my goal as an independent research group leader in volcanology.

Coordinator

LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Net EU contribution
€ 171 460,80
Address
GESCHWISTER SCHOLL PLATZ 1
80539 MUNCHEN
Germany

See on map

Region
Bayern Oberbayern München, Kreisfreie Stadt
Activity type
Higher or Secondary Education Establishments
Links
Total cost
€ 171 460,80