Objective
The future of the aeronautical industry is tied inevitably to the development of enabling technologies that make it possible the coming of the Factory of the Future.
Technology advances like those on Geoposition and Navigation, the Internet of Things (IoT), Virtual and Augmented reality (VR/AR), speech and handwriting recognition, biometrics, wearable technology, drones, etc. are being widely implanted in many industries. However, aircraft manufacturing has been traditionally reluctant to the introduction of technology leaps in the production process, even those considered game changers in other sectors. This is mainly due to the complexity and the strict safety assurance requirements involving the aeronautical sector but it is that here’s a tremendous bias against taking any sort of risks, and any innovation is seen as a risk in this industry. Therefore, any improvement must guarantee the highest quality and safety standards.
The final assembly of an aircraft is identified as a field with a lot of room for improvement. The introduction of some of the aforementioned technologies in the modern Final Assembly Line (FAL) can definitely impact the factory’s lean manufacturing and the environmental sustainability of the whole process. Implantation of new assembly procedures can take advantage of commercially available technology, but also actual methods and procedures like the moving assembly line, visual control systems, point-of-use staging, just-in-time delivery systems, etc. can be significantly improved.
The General Objective of the current proposal (ARIESS, Augmented Reality Indoor Enhanced aSSembling for factory of the future industry) is the introduction of cutting-edge Human-Machine Interfaces (HMI) and the supporting infrastructure for indoor positioning and navigation, augmented reality techniques and real-time data integration to improve the productivity, competitiveness, and sustainability of a FAL, paving the way for the modern Industry 4.0.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering control systems
- engineering and technology mechanical engineering vehicle engineering aerospace engineering aircraft
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors smart sensors
- engineering and technology mechanical engineering vehicle engineering aerospace engineering aeronautical engineering
- natural sciences computer and information sciences software software applications simulation software
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.3.4. - SOCIETAL CHALLENGES - Smart, Green And Integrated Transport
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.3.4.5.4. - ITD Airframe
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
CS2-RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-CS2-CFP04-2016-02
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
41092 SEVILLA
Spain
The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.