Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Critical behavior of lattice models

Objective

Statistical physics is a theory allowing the derivation of the statistical behavior of macroscopic systems from the description of the interactions of their microscopic constituents. For more than a century, lattice models (i.e. random systems defined on lattices) have been introduced as discrete models describing the phase transition for a large variety of phenomena, ranging from ferroelectrics to lattice gas.

In the last decades, our understanding of percolation and the Ising model, two classical exam- ples of lattice models, progressed greatly. Nonetheless, major questions remain open on these two models.

The goal of this project is to break new grounds in the understanding of phase transition in statistical physics by using and aggregating in a pioneering way multiple techniques from proba- bility, combinatorics, analysis and integrable systems. In this project, we will focus on three main goals:

Objective A Provide a solid mathematical framework for the study of universality for Bernoulli percolation and the Ising model in two dimensions.
Objective B Advance in the understanding of the critical behavior of Bernoulli percolation and the Ising model in dimensions larger or equal to 3.
Objective C Greatly improve the understanding of planar lattice models obtained by general- izations of percolation and the Ising model, through the design of an innovative mathematical theory of phase transition dedicated to graphical representations of classical lattice models, such as Fortuin-Kasteleyn percolation, Ashkin-Teller models and Loop models.

Most of the questions that we propose to tackle are notoriously difficult open problems. We believe that breakthroughs in these fundamental questions would reshape significantly our math- ematical understanding of phase transition.

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-STG - Starting Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2017-STG

See all projects funded under this call

Host institution

INSTITUT DES HAUTES ETUDES SCIENTIFIQUES
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 301 459,31
Address
ROUTE DE CHARTRES 35
91440 Bures Sur Yvette
France

See on map

SME

The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.

Yes
Region
Ile-de-France Ile-de-France Essonne
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 301 459,31

Beneficiaries (2)

My booklet 0 0