Objective
There is an urgent need for the development of greener syntheses procedures if mankind wants to maintain an environment worth living in but is at the same time unwilling to accept a reduction in material comfort. The establishment of more biocatalytic steps in chemical syntheses is one possible solution, as enzymes and whole cells offer sustainable advantages, such as biodegradability, intoxicity, high selectivity, and many more. As a myriad of enzymatic reactions exist for almost any product, their potential is immense. Great scientific achievements and new techniques recently developed have enabled the design of economically and ecologically feasible multi-step enzyme cascades. However, with these new opportunities, also new challenges arise. The more enzyme steps are combined in one pot, the higher the risk of undesired cross-reactivity is. There is thus an urgent need for a tight control of each biocatalytic step in a cascade in order to obtain the desired product in a high purity and to make use of all advantages that enzyme cascades intrinsically offer. With LightCas, I aim to break new grounds in the area of multi-step (bio)catalysis by enabling an orthogonal, selective and thus flexible on/off tuning of enzymes in a cascade. By entrapping enzymes into light-switchable microgels, using photo-switchable active site lids and light-induced enzyme deactivation, three methods providing the opportunity to control enzyme activity in vitro and in vivo on demand will be (further) developed. The ultimate goal is to set up a one-pot multi-step light-controlled enzyme reactor yielding the desired product in high selectivity and concentration in a technically self-regulated manner.
Beyond the ground-breaking direct impact in the field of enzyme catalysis, huge gains in knowledge are expected from LightCas with respect to the application of intelligent stimuli-responsive materials as well as new, advanced methods for applications in the clinical and research environment.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences catalysis
- natural sciences biological sciences biochemistry biomolecules proteins enzymes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2017-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
52428 JULICH
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.