Objective
Neuroscience is at an inflection point. The 150-year old cortical specialization paradigm, in which cortical brain areas have a distinct set of functions, is experiencing an unprecedented momentum with over 1000 articles being published every year. However, this paradigm is reaching its limits. Recent studies show that current approaches to atlas brain areas, like relative location, cellular population type, or connectivity, are not enough on their own to characterize a cortical area and its function unequivocally. This hinders the reproducibility and advancement of neuroscience.
Neuroscience is thus in dire need of a universal standard to specify neuroanatomy and function: a novel formal language allowing neuroscientists to simultaneously specify tissue characteristics, relative location, known function and connectional topology for the unequivocal identification of a given brain region.
The vision of NeuroLang is that a unified formal language for neuroanatomy will boost our understanding of the brain. By defining brain regions, networks, and cognitive tasks through a set of formal criteria, researchers will be able to synthesize and integrate data within and across diverse studies. NeuroLang will accelerate the development of neuroscience by providing a way to evaluate anatomical specificity, test current theories, and develop new hypotheses.
NeuroLang will lead to a new generation of computational tools for neuroscience research. In doing so, we will be shedding a novel light onto neurological research and possibly disease treatment and palliative care. Our project complements current developments in large multimodal studies across different databases. This project will bring the power of Domain Specific Languages to neuroscience research, driving the field towards a new paradigm articulating classical neuroanatomy with current statistical and machine learning-based approaches.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- humanitieslanguages and literaturegeneral language studies
- natural sciencesbiological sciencesneurobiology
- natural sciencescomputer and information sciencesdatabases
- natural sciencesmathematicspure mathematicstopology
- natural sciencescomputer and information sciencesknowledge engineering
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Programme(s)
Topic(s)
Funding Scheme
ERC-STG - Starting GrantHost institution
78153 Le Chesnay Cedex
France