Objective Atmospheric concentration of the strong greenhouse gas methane (CH4) is rising with an increased annual growth rate. Biosphere has an important role in the global CH4 budget, but high uncertainties remain in the strength of its different sink and source components. Among the natural sources, the contribution of vegetation to the global CH4 budget is the least well understood. Role of trees to the CH4 budget of forest ecosystems has long been overlooked due to the perception that trees do not play a role in the CH4 dynamics. Methanogenic Archaea were long considered as the sole CH4 producing organisms, while new findings of aerobic CH4 production in terrestrial vegetation and in fungi show our incomplete understanding of the CH4 cycling processes. Enclosure measurements from trees reveal that trees can emit CH4 and may substantially contribute to the net CH4 exchange of forests.The main aim of MEMETRE project is to raise the process-based understanding of CH4 exchange in boreal and temperate forests to the level where we can construct a sound process model for the soil-tree-atmosphere CH4 exchange. We will achieve this by novel laboratory and field experiment focusing on newly identified processes, quantifying CH4 fluxes, seasonal and daily variability and drivers of CH4 at leaf-level, tree and ecosystem level. We use novel CH4 flux measurement techniques to identify the roles of fungal and methanogenic production and transport mechanisms to the CH4 emission from trees, and we synthesize the experimental work to build a process model including CH4 exchange processes within trees and the soil, transport of CH4 between the soil and the trees, and transport of CH4 within the trees. The project will revolutionize our understanding of CH4 flux dynamics in forest ecosystems. It will significantly narrow down the high uncertainties in boreal and temperate forests for their contribution to the global CH4 budget. Fields of science natural sciencesearth and related environmental sciencesatmospheric sciencesclimatologyclimatic zonesnatural scienceschemical sciencesorganic chemistryvolatile organic compoundsnatural sciencesphysical sciencesopticsspectroscopyabsorption spectroscopynatural sciencesbiological sciencesecologyecosystemsnatural scienceschemical sciencesorganic chemistryaliphatic compounds Programme(s) H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC) Main Programme Topic(s) ERC-2017-STG - ERC Starting Grant Call for proposal ERC-2017-STG See other projects for this call Funding Scheme ERC-STG - Starting Grant Coordinator HELSINGIN YLIOPISTO Net EU contribution € 1 908 652,00 Address Yliopistonkatu 3 00014 Helsingin yliopisto Finland See on map Region Manner-Suomi Helsinki-Uusimaa Helsinki-Uusimaa Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00 Beneficiaries (1) Sort alphabetically Sort by Net EU contribution Expand all Collapse all HELSINGIN YLIOPISTO Finland Net EU contribution € 1 908 652,00 Address Yliopistonkatu 3 00014 Helsingin yliopisto See on map Region Manner-Suomi Helsinki-Uusimaa Helsinki-Uusimaa Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00