Objective This “Life-Cycle” ERC proposal aims to develop a new class of artificial supramolecular materials that are kept in sustained non-equilibrium states by continuous dissipation of chemical fuels. Supramolecular polymers in current artificial materials stick together through weak reversible bonds that can be exchange by thermal energy. In contrast, natural supramolecular polymers such as those in the cytoskeletal network use chemical fuels such as adenosine triphosphate (ATP) to achieve an incredible adaptivity, motility, growth, and response to external inputs. Development of chemically fueled artificial supramolecular polymers should therefore lead to more life-like materials that could perform functions so far reserved only for living beings. The proposed materials are based on supramolecular reaction cycles that have both positive and negative feedback in order to achieve emergent properties, such as oscillations and waves. Two different approaches are used: i) supramolecular polymers that are fueled by redox reactions, and ii) enzyme-switchable supramolecular polymers that consume one of the natural fuels, namely ATP. The proposed polymers self-assemble cooperatively, which is used as a positive feedback mechanism. Using other co-assembling species we can engineer negative feedback in our reaction cycles to obtain unique supramolecular dynamics. Since the building blocks react, but also self-assemble they have built-in chemomechanical properties, much like in living materials such as the cytoskeleton. First we study the temporal behavior (part A) of our reaction cycles in well-stirred environments. Next, we move to non-stirred conditions (part B), where spatiotemporal behavior can be studied. And lastly, we develop free-standing non-equilibrium interactive materials based on our reaction cycles (part C). Overall, our approach opens a new way to obtain more life-like artificial materials that can eventually perform complex (biological) functions. Fields of science natural scienceschemical sciencesorganic chemistryorganic reactionsnatural scienceschemical sciencespolymer sciencesengineering and technologyenvironmental engineeringenergy and fuels Programme(s) H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC) Main Programme Topic(s) ERC-2017-STG - ERC Starting Grant Call for proposal ERC-2017-STG See other projects for this call Funding Scheme ERC-STG - Starting Grant Coordinator CENTRE INTERNATIONAL DE RECHERCHE AUX FRONTIERES DE LA CHIMIE FONDATION Net EU contribution € 577 438,00 Address Allee g monge 8 67000 Strasbourg France See on map Region Grand Est Alsace Bas-Rhin Activity type Research Organisations Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00 Beneficiaries (2) Sort alphabetically Sort by Net EU contribution Expand all Collapse all CENTRE INTERNATIONAL DE RECHERCHE AUX FRONTIERES DE LA CHIMIE FONDATION France Net EU contribution € 577 438,00 Address Allee g monge 8 67000 Strasbourg See on map Region Grand Est Alsace Bas-Rhin Activity type Research Organisations Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00 Third-party Legal entity other than a subcontractor which is affiliated or legally linked to a participant. The entity carries out work under the conditions laid down in the Grant Agreement, supplies goods or provides services for the action, but did not sign the Grant Agreement. A third party abides by the rules applicable to its related participant under the Grant Agreement with regard to eligibility of costs and control of expenditure. UNIVERSITE DE STRASBOURG France Net EU contribution € 1 185 050,00 Address Rue blaise pascal 4 67081 Strasbourg See on map Region Grand Est Alsace Bas-Rhin Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00