Objective
Structure holds the key to many of the physical world’s most intriguing secrets. Diffraction from single crystals has revolutionized our knowledge of crystalline matter by providing atomic-scale images of countless samples and leading to landmark achievements in science. However, when crystals of sufficient dimensions cannot be grown, structure can hardly be retrieved using currently available methodologies. This hampers our understanding of the physico-chemical behavior of numerous samples, such as functional organic powders (FOP), hence precluding the design of new materials with tailored properties. Solid-state NMR (SSNMR) has the potential to be the key to access the structure of powders for applications in energy or pharmacy. However, the inherently low sensitivity of NMR constitutes the main barrier to retrieve valuable constraints such as interatomic distances and torsional angles from spin-spin couplings involving rare nuclei (e.g. C-13, N-15) on organic samples at natural isotopic abundance (NA), for which chemical shifts are certainly easier to access but less structurally relevant. The project will capitalize on Dynamic Nuclear Polarization (DNP) to enhance the sensitivity of SSNMR and obtain unique structural constraints on NA FOPs. Specifically: (i) intra and intermolecular distances, torsional/bond angles and H bonds will be measured for the first time via DNP SSNMR; (ii) together with powder X-ray data, these constraints will be integrated within modern computational algorithms to assist the generation of physically meaningful 3D structures with minimized risk of false positives. The protocol will be applied to time-resolved in situ/ex situ investigation of self-assembly to gain control into polymorph production. We will create an integrated experimental/in silico tool that will extend the proficiency of crystallography in de novo structure elucidation of FOPs of increasing complexity, opening new avenues in chemistry and materials science.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences earth and related environmental sciences geology mineralogy crystallography
- medical and health sciences basic medicine pharmacology and pharmacy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2017-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75794 PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.