Objective
During an organism’s development it must integrate internal and external information. An example in plants, whose development stretches across their lifetime, is the coordination between environmental stimuli and endogenous cues on regulating the key hormone gibberellin (GA). The present challenge is to understand how these diverse signals influence GA levels and how GA signalling leads to diverse GA responses. This challenge is deepened by a fundamental problem in hormone research: the specific responses directed by a given hormone often depend on the cell-type, timing, and amount of hormone accumulation, but hormone concentrations are most often assessed at the organism or tissue level. Our approach, based on a novel optogenetic biosensor, GA Perception Sensor 1 (GPS1), brings the goal of high-resolution quantification of GA in vivo within reach. In plants expressing GPS1, we observe gradients of GA in elongating root and shoot tissues. We now aim to understand how a series of independently tunable enzymatic and transport activities combine to articulate the GA gradients that we observe. We further aim to discover the mechanisms by which endogenous and environmental signals regulate these GA enzymes and transporters. Finally, we aim to understand how one of these signals, light, regulates GA patterns to influence dynamic cell growth and organ behavior. Our overarching goal is a systems level understanding of the signal integration upstream and growth programming downstream of GA. The groundbreaking aspect of this proposal is our focus at the cellular level, and we are uniquely positioned to carry out our multidisciplinary aims involving biosensor engineering, innovative imaging, and multiscale modelling. We anticipate that the discoveries stemming from this project will provide the detailed understanding necessary to make strategic interventions into GA dynamic patterning in crop plants for specific improvements in growth, development, and environmental responses.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors biosensors
- agricultural sciences agriculture, forestry, and fisheries agriculture
- natural sciences biological sciences biochemistry biomolecules proteins enzymes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2017-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
CB2 1TN CAMBRIDGE
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.