Objective Identifying Archean fossil remains from the Earth’s early biosphere is ambitious and determining the biological origin and the associated metabolic pathways present in these fossils is one outstanding question in the bigger quest of how life evolved on Earth. Stromatolites and Microbially Induced Sedimentary Structures (MISS) are considered as one of the earliest evidence of Life in Earth’s history, and can be found from the Archean to the present time. Stromatolites are “attached laminated, sedimentary growth structure accretionary away from a point of initiation”, and their morphological comparison with actual structure prevail for assessing the microbial origin of ancient stromatolite in the geological record. However, experimental studies have shown that abiotic precipitation can also form structures with a similar morphology. Therefore stable isotope proxies have been used to identify past microbial metabolisms even if abiotic processes can also produce similar isotope composition. Therefore new biogenicity criteria are needed to be determined by studying modern and ancient stromatolites and by comparing them to abiotic experiment. Stromatolites and MISS contain submicrometer sulfides (pyrite) that can have recorded large isotopic variations, interpreted as reflecting the influence of various microbial metabolisms like microbial sulfate reduction and iron respiration. STROMATA proposes to define new criteria based on actual stromatolite and to test the earliest traces of life by studying in situ these nano-pyrites in various emblematic and well-characterized samples from the Archean. STROMATA will be the first far-reaching scientific in situ study of nano-pyrite in ancient (3.4 to 1.9 Ga) and modern microbial mats and stromatolites and will compare the results with experimentally produced abiotic pyrite. Due to the small scale of the pyrite, STROMATA will develop an original in situ approach by combining state of art techniques, SIMS, NanoSIMS, FEG-TEM, XANES. Fields of science natural sciencesearth and related environmental sciencesgeochemistrynatural sciencesphysical sciencesopticsmicroscopynatural sciencesearth and related environmental sciencesatmospheric sciencesmeteorologybiospheranatural sciencesearth and related environmental sciencesgeologymineralogynatural sciencesbiological sciencesbotany Programme(s) H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC) Main Programme Topic(s) ERC-2017-STG - ERC Starting Grant Call for proposal ERC-2017-STG See other projects for this call Funding Scheme ERC-STG - Starting Grant Coordinator UNIVERSITE DE LAUSANNE Net EU contribution € 1 060 250,00 Address Quartier unil-centre bâtiment unicentre 1015 Lausanne Switzerland See on map Region Schweiz/Suisse/Svizzera Région lémanique Vaud Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00 Beneficiaries (2) Sort alphabetically Sort by Net EU contribution Expand all Collapse all UNIVERSITE DE LAUSANNE Switzerland Net EU contribution € 1 060 250,00 Address Quartier unil-centre bâtiment unicentre 1015 Lausanne See on map Region Schweiz/Suisse/Svizzera Région lémanique Vaud Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00 UNIVERSITE JEAN MONNET SAINT-ETIENNE Participation ended France Net EU contribution € 0,00 Address Rue trefilerie 10 42023 Saint etienne See on map Region Auvergne-Rhône-Alpes Rhône-Alpes Loire Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00