Skip to main content

Long-range coupling of hole spins on a silicon chip

Objective

With the miniaturization of electronic devices, the semiconductor industry has to deal with complex technical barriers and is forced to introduce novel and innovative concepts. The project proposal is exactly in line with this new paradigm as it proposes to divert CMOS technology to explore a new path for quantum spintronics. Concretely the project aims at using spin-orbit interaction present in the valence band of silicon to drive ultra-fast and ultra-coherent hole spin quantum bits (qubits). The proposal builds on the first demonstration by the principal investigator of a hole spin qubit electrically driven in silicon.
While spins are excellent quantum bits, their long-range coupling remains a challenge to tackle towards complex quantum computing architectures. Here I propose to take up this challenge using a microwave photon as a quantum mediator between qubits in silicon.
The LONGSPIN project presents a unique approach by leveraging a standard silicon-on-insulator CMOS process for the implementation of the qubits co-integrated with superconducting microwave resonators.
This research project will provide a CMOS quantum toolkit with optimized designs and materials for fast and coherent qubits with a profound understanding of the physical limitations to hole spin coherence and hole qubit gate fidelity in silicon. Eventually a microwave photon used as a quantum bus will allow the transfer of quantum information between distant spin qubits.

Call for proposal

ERC-2017-STG
See other projects for this call

Funding Scheme

ERC-STG - Starting Grant

Host institution

COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
Address
Rue Leblanc 25
75015 Paris 15
France
Activity type
Research Organisations
EU contribution
€ 1 998 423

Beneficiaries (1)

COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
France
EU contribution
€ 1 998 423
Address
Rue Leblanc 25
75015 Paris 15
Activity type
Research Organisations