Objective
The increasing global demand for renewable energy utilization sets a positive growth scenario for the wind energy sector. Indeed, it is predicted that the global wind power capacity at 318 GW at the end of 2013, to reach 618 GW by the end of 2020. However, despite the growth potential, the wind energy sector faces several challenges that might endanger its long term sustainability. These challenges refer mainly to the industry competitiveness, which is increasingly affected by the price reduction of other energy alternatives, and because the most profitable (windiest) places are already occupied, the available free space is less profitable in terms of bulk energy generation, as well as a progressive reduction in government level subsidies (example in UK and Spain). This results in a strong price sensitivity for the wind energy sector, for which the only alternative goes through a significant reduction of bulk power costs. Considering that the price of wind turbines accounts for more than 80% of the total costs of a wind farm (2M-4M€/turbine), it is clear that reducing wind turbines prices is the only meaningful solution for the long term sustainability of the sector. 3D-COMPETE will provide the wind energy sector with a low cost solution for manufacturing the complex and heavy structural parts of wind blades. The proposed innovation is the use of an additive manufacturing process, automated fibre placement (AFP), which will enable the automation of the process. Our solution will reduce the manufacturing costs of these components by 40% (from 4,000€/ton down to 2,400€/ton). As for understanding the business opportunity, 3D-COMPETE solution will bring our customer (wind blade manufacturers) savings that can range €3.5M/year (for smaller clients that produce ~400 wind blades/year) up to €26M (for larger clients that produce ~3,000 blades/year).
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technologymaterials engineeringcomposites
- social sciencessociologyindustrial relationsautomation
- social scienceseconomics and businessbusiness and managementbusiness models
- engineering and technologyenvironmental engineeringenergy and fuelsrenewable energywind power
- engineering and technologymechanical engineeringmanufacturing engineeringadditive manufacturing
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
- H2020-EU.2.1.2. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies – Nanotechnologies Main Programme
- H2020-EU.2.1.5. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Advanced manufacturing and processing
- H2020-EU.2.1.3. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Advanced materials
- H2020-EU.2.3.1. - Mainstreaming SME support, especially through a dedicated instrument
Call for proposal
(opens in new window) H2020-SMEInst-2016-2017
See other projects for this callSub call
H2020-SMEINST-1-2016-2017
Funding Scheme
SME-1 - SME instrument phase 1Coordinator
28109 MADRID
Spain
The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.