Objective
Wind energy is the largest of the new renewable energies and traditional wind turbine design has reached maturity, but still improvements can be done through better understanding of the physics for the entire wind turbine system. At the same time demand for more green energy, requires new turbine designs with improved environmental characteristics, adaptable to new locations, etc.
In the UPWARDS project the goal is by the help of high performance computing (HPC) to develop a simulation framework, which will incorporate a more complete description of the wind field, turbine, the support structure, etc. and their interaction in order to better understand the physics of the entire system. The complex wind field will be calculated adding interactions from nearby turbines, waves, terrain, etc.
The simulation framework will yield more accurate prediction of the forces acting in the system and thus the energy captured by the turbine. In addition, it will better predict acoustic phenomena, and materials issues related to the turbine blades, etc. The platform will be modular and new design will be relatively simple to introduce.
An important part of the project is to evaluate the socio-economic impact and to bring user communities into the project development.
Altogether this will improve the design development process and allow for faster implementation of new and more advanced designs with less environmental impact. It will also improve the accuracy in power production.
The methodologies and major results from the project will be published in open access journals or freely accessible reports. In addition an open database containing relevant results and raw data will be established. This will enable other researchers and turbine developers to utilise the results for further studies.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering control systems
- engineering and technology environmental engineering energy and fuels renewable energy wind energy
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering computer hardware supercomputers
- natural sciences computer and information sciences computational science multiphysics
- natural sciences computer and information sciences software software applications simulation software
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.3.3. - SOCIETAL CHALLENGES - Secure, clean and efficient energy
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.3.3.5. - New knowledge and technologies
See all projects funded under this programme -
H2020-EU.3.3.2. - Low-cost, low-carbon energy supply
See all projects funded under this programme -
H2020-EU.3.3.3. - Alternative fuels and mobile energy sources
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-LCE-2016-2017
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
7034 Trondheim
Norway
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.